
Figure 1.10 From 2D to 3D with a kernel.

A support vector machine is a binary classifier that implicitly maps data in feature space to
higher dimensions in which data becomes separable by a linear plane, called a . Thishyperplane
mapping is implicit, and is carried out by a . This is a function that transforms thekernel function
original input space to an alternative representation that implicitly has a higher dimensionality,
with the aim of disentangling the data and making it linearly separable.

But the migration is implicit in the sense that it takes the form of a similarity function (φ in the
picture above) applied to two feature vectors, just computing their distance. This is cordially
called the , It sounds like sheer magic, but it is actually quite simple. Let’s take akernel trick
look.

You should already be familiar with the dot product of two vectors. If not, please see Appendix 2
for a refresher. To recap, the standard dot product of two vectors and is the sum of thea b
cross-product of the two vectors:

Listing 1.2 Dot product in Python.

So, a dot product is just a multiplicative operation on two vectors that produces a single number.

Kernels are generalizations of this dot product between vectors: they compute the dot product
between versions of these vectors. The nature of alteration is specified by a altered kernel

 . Generally speaking, a kernel function takes two vectors, mixes in a constant (a kernelfunction φ
parameter) and adds some kernel-specific ingredients to produce a specific form of a dot product
of the two vectors.

Let’s return to our orange and apple. The objects are described by pairs of coordinates (x,y),
since the table they’re lying on is a flat XY-plane. Like othertypes of kernels, the so-called

 maps lower-dimensional spaces to higher-dimensional ones. You may recallpolynomial kernel

def dot_product(a,b):
 return sum([a[i]*b[i] for i in range(len(a))])

10

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/deep-learning-for-natural-language-processing/discussionLicensed to Martin Valma <cmvalma.rg@gmail.com>

